
1

An Algorithm for Multipath Computation using Distance-Vectors with
Predecessor Information

SRINIVAS VUTUKURY

vutukury@cse.ucsc.edu
Computer Sciences Department

University of California
Santa Cruz, CA 95064

J.J. GARCIA-LUNA-ACEVES

jj@cse.ucsc.edu
Computer Engineering Department

University of California
Santa Cruz, California 95064

Networking and Security Center
Sun Microsystems Laboratories

Palo Alto, California 94303

Abstract—Routing algorithms in the IP Internet provide a single path between each
source-destination pair and where more than one path is provided, they are paths
of equal length. Single-path routing is inherently slow in responding to congestion
and temporary traffic bursts; multiple paths are better suited to handle congestion.
Also the paths provided in RIP and OSPF are not free of loops during times of net-
work transition, which can be debilitating to network performance. We present a
distributed routing algorithm for computing multiple paths that need not have equal
length between each source-destination pair in a computer network such that they
are loop-free at every instant—in steady state as well as during network transitions.
The algorithm is scalable to large networks as it uses only one-hop synchronization
which is unlike diffusing computations that require internodal synchronization span-
ning multiple hops. The safety and liveness properties of the algorithm are proven and
its complexity is analyzed.

I. I NTRODUCTION

The most popular routing protocols used in today’s internets are
based on the exchange of vectors of distances (e.g., RIP [7] and
EIGRP [2]) or topology maps (e.g., OSPF [11]). RIP and many other
routing protocols based on the distributed Bellman-Ford algorithm
(DBF) for shortest-path computation suffer from thebouncing effect
and thecounting-to-infinityproblems, which limits their applicability
to small networks using hop count as the measure of distance. OSPF
and algorithms based on topology-broadcast (e.g., [15], [12]) incur too
much communication overhead, which forces the network administra-
tors to partition the network into areas connected by a backbone. This
makes OSPF complex in terms of router configuration required. EIGRP
uses a loop-free routing algorithm called DUAL [3], which is based on
internodal coordination that can span multiple hops.

In addition to DUAL, several algorithms based on distance vectors
have been proposed to overcome the counting-to-infinity problem of
DBF [14], [10], [9], [17]. All of these algorithms rely on exchanging
queries and replies along multiple hops, a technique that is sometimes
calleddiffusing computations, because it has its origin in Dijkstra and
Scholten’s basic algorithm [1].

A couple of routing algorithms have been proposed that operate us-
ing partial topology information [4], [6] to eliminate the main limita-
tion of topology-broadcast algorithms. Furthermore, several distributed
shortest-path algorithms [8], [13], [5] have been proposed that use the
distance and second-to-last hop to destinations as the routing informa-
tion exchanged among nodes. These algorithms are often called path-
finding algorithms or source-tracing algorithms. All these algorithms
eliminate DBF’s counting to infinity problem, and some of them [5] are
more efficient that any of the routing algorithms based on link-state in-
formation proposed to date. Furthermore, LPA [5] is loop-free at every
instant.

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
grants F30602-97-1-0291 and F19628-96-C-0038.

With the exception of DASM [17], all of the above routing algo-
rithms focus on the provision of a single path to each destination. A
drawback of DASM, however, is that it uses multi-hop synchroniza-
tion, which limits its scalability. Recently, we presented MPDA [16]
which is the first routing algorithm based on link-states that provides
multiple loop-free paths using one-hop synchronization. In this paper,
we present a variant of MPDA called MPATH, which is the first routing
algorithm based on distance vectors that (a) provides multiple paths of
unequal cost to each destination that are free of loops at every instant
— in steady state as well as during network transitions, and (b) uses
a synchronization mechanism that spans only one hop, which makes
it more scalable than routing algorithms based on diffusing computa-
tions spanning multiple hops. MPATH is a path-finding algorithm, and
differs from prior similar algorithms in the invariants used to ensure
multiple loop-free paths of unequal cost. The peculiar differences be-
tween MPATH and MPDA is a result of the differences in the kind of
information that nodes exchange.

Section II describes MPATH. Section III presents the correctness
proofs showing that MPATH is loop-free at every instant, safe, and
live. Section IV analyzes the complexity of MPATH. Section V pro-
vides concluding remarks.

II. D ISTRIBUTED MULTIPATH ROUTING ALGORITHM

A. Problem Formulation

A computer network is represented as a graphG = (N;L) whereN
is set of nodes (routers) andL is the set of edges (links) connecting the
nodes. A cost is associated with each link and can change over time, but
is always positive. Two nodes connected by a link are called adjacent
nodes or neighbors. The set of all neighbors of a given nodei is denoted
by N i. Adjacent nodes communicate with each other using messages
and messages transmitted over an operational link are received with no
errors, in the proper sequence, and within a finite time. Furthermore,
such messages are processed by the receiving node one at a time in
the order received. A node detects the failure, recovery and link cost
changes of each adjacent link within a finite time.

The goal of our distributed routing algorithm is to determine at each
node i the successor set ofi for destinationj, which we denote by
Sij(t) � N i, such that the routing graphSGj(t) consisting of link set
f(m;n)jn 2 Smj (t); m 2 Ng is free of loops at every instantt, even
when link costs are changing with time. The routing graphSGj(t)
for single-path routing is a sink-tree rooted atj, because the successor
setsSij(t) have at most one member. In multipath routing, there can be
more than one member inSij(t); therefore,SGj(t) is a directed acyclic
graph withj as the sink node. There are potentially severalSGj(t)
for each destinationj; however, the routing graph we are interested is
defined by the successor setsSij(t) = fkjDk

j (t) < Di
j(t); k 2 N ig,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
An Algorithm for Multipath Computation using Distance-Vectors with
Predecessor Information

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

ProcedureINIT-PATH
fInvoked when the node comes up.g
1. Initialize all tables.
2. RunPATH algorithm.

End INIT-PATH

Algorithm PATH
fInvoked when a message M is received from neighbork,
or an adjacent link tok has changed or when a node is
initialized.g
1. RunNTU to update neighbor tables.
2. RunMTU to update main tables.
3. For each destinationj marked aschanged,

Add update entry [j, Di
j , p

i
j] to the new messageM 0.

4. Within finite amount of time, send messageM 0 to
each neighbor.

End PATH

Fig. 1. The PATH Algorithm

whereDi
j is the shortest distance of nodei to destinationj. We call

such a routing graph theshortest multipathfor destinationj.
After a series of link cost changes which leave the network topol-

ogy in arbitrary configuration, the distributed routing algorithm should
work to modifySGj in such a way that it eventually converges to the
shortest multipath of the new configuration, without ever creating a
loop inSGj during the process.

BecauseDk
j is nodek’s local variable, its value has to be explic-

itly or implicitly communicated toi. If Di
jk is the value ofDk

j

as known to nodei, the problem now becomes one of computing
Sij(t) = fkjDi

jk(t) < Di
j(t)g. However, because of non-zero prop-

agation delays, during network transitions there can be discrepancies
in the value ofDk

j and its copyDi
jk at i, which may cause loops to

form in SGj . To prevent loops, therefore, additional constraints must
be imposed when computingSij . We show later that if the successor set
at each nodei for each destinationj satisfy certain conditions called
loop-free invariant conditions, then the snapshot at timet of the routing
graphSGj(t) implied bySij(t) is free of loops. Our solution to this
problem consists of two parts: (1) computingDi

j using a shortest-path
routing algorithm called PATH and (2) extending it to computeSij such
that they satisfying loop-free invariant conditions at every instant.

B. Node Tables and Message Structures

As in DBF, nodes executing MPATH exchange messages containing
distances to destinations. In addition to the distance to a destination,
nodes also exchange the identity of the second-to-last node, also called
predecessor node, which is the node just before the destination node
on the shortest path. In this respect MPATH is akin to several prior
algorithms [5], [13], [8], but differs in its specification, verification and
analysis and, more importantly, in the multipath operation described in
the next section.

The following information is maintained at each nodei:
1. TheMain Distance TablecontainsDi

j andpij , whereDi
j is the

distance of nodei to destinationj andpij is the predecessor to des-
tinationj on the shortest path fromi to j. The table also stores for
each destinationj, the successor setSij , feasible distanceFDi

j ,
reported distanceRDi

j and two flagschangedandreport-it.
2. TheMain Link TableT i is the node’s view of the network and

contains links represented by(m; n; d) where(m; n) is a link
with costd.

3. TheNeighbor Distance Tablefor neighbork containsDi
jk and

pijk whereDi
jk is the distance of neighbork to j as communicated

ProcedureNTU
fCalled by PATH to process an event.g
1. If event is a message M from neighbork,

a. For each entry [j, d, p] in M //Note d = Dk
j , p = pkj .)

SetDi
jk d andpijk p.

b. For each destinationj with an entry in M,
Remove existing links (n, j) in T i

k and add new
link (m, j, d) to T i

k, whered = Di
jk �D

i
mk

andm = pijk.
2. If the event is an adjacent link-status change, updatelik and

clear neighbor tables ofk, if link is down.
End NTU

Fig. 2. Neighbor Table Update Algorithm

by k andpijk is the predecessor toj on the shortest path fromk to
j as notified byk.

4. TheNeighbor Link TableT i
k is the neighbork’s view of the net-

work as known toi and contains link information derived from
the distance and predecessor information in the neighbor distance
table.

5. Adjacent Link Tablestores the costlik of adjacent link to each
neighbork. If a link is down its cost is infinity.

Nodes exchange information using update messages which have the
following format.

1. An update message can one or more update entries. An update
entry is a triplet [j, d, p], whered is the distance of the node
sending the message to destinationj andp is the predecessor on
the path toj.

2. Each message carries two flags used for synchronization:query
andreply.

C. ComputingDi
j

As mentioned earlier, our strategy is to first design a shortest-path
routing algorithm and then make the multipath extensions to it. This
subsection describes our shortest-path algorithm PATH and the next
subsection describes the multipath extensions. Figure 1 shows the
pseudocode of PATH. INIT-PATH is called at node startup to initial-
ize the tables; distances are initialized to infinity and node identities
to a null value. PATH is executed in response to an event that can be
either a receipt of an update message from a neighbor or detection of
an adjacent link cost or link status (up/down) change. PATH invokes
procedure NTU, described in Figure 2, which first updates the neigh-
bor distance tables and then updatesT i

k with links (m; n; d) where
d = Di

nk �D
i
mk andm = pink. PATH then invokes procedure MTU,

specified in Figure 5, which constructsT i by merging the topologies
T i
k and the adjacent linkslik.
The merging process is straightforward if all neighbor topologies

T i
k contain consistent link information, but when two or more neigh-

bors link tables contain conflicting information regarding a particular
link, the conflict must be resolved. Two neighbor tables are said to
contain conflicting information regarding a link, if either both report
the link with different cost or one reports the link and the other does
not. Conflicts are resolved as follows: if two or more neighbor link
tables contain conflicting information of link(m; n), thenT i is up-
dated with link information reported by the neighbork that offers the
shortest distance from the nodei to the head nodem of the link, i.e.,
lik + Di

mk = minflik + Di
mkjk 2 N

ig. Ties are broken in aconsis-
tentmanner; one way is to break ties always in favor of lower address
neighbor. Becausei itself is the head of the link for adjacent links, any
information about an adjacent link supplied by neighbors will be over-
ridden by the most current information about the link available to node
i. Figure 4 shows the significance of the tie-breaking rule.

3

i

i ip q

p q

x xy y

j pjq

i

p

q

x

y

j

2 1 1
1

1

1 4 3

1
1

3

1

3

4

1
1

1

3
1

2

1

1

(a)

(b)

Table showing the preferred neighbors.
Destination p q x y j
Distance 2 1 2 3 5
Pref. Nbr p q q p q

Fig. 3. Example illustrating the main table update procedure. (a) Shows the adjacent
links and neighbor tables of nodei. (b) Shows the main link tablei after merging the
neighbor tables

xp

j

yq

i

i

i ip q

p q

x xy y

j pjq

i

p

q

x

y

(b)

j

(a)

(c)

Fig. 4. Significance of the tie-breaking Rule. (a) An example network with unit link costs.
(b) Nodei has the costs of its adjacent links and the shortest path trees of its neighbors
p andq. The distances of nodesx andy from i is identical through both neighborsp
andq. (c) If MTU breaks ties in arbitrary manner while constructingT i, it may choose
p as the preferred neighbor for nodex and chooseq as preferred neighbor for nodey,
resulting in a graph that has no path fromi to j. Ties, therefore, cannot be broken in
arbitrary manner.

After merging the topologies, MTU runs Dijkstra’s shortest path al-
gorithm to find the shortest path tree and deletes all links fromT i that
are not in the tree. Because there can be more than one shortest-path
tree, while running Dijkstra’s algorithm ties are again broken in a con-
sistent manner. The distancesDi

j and predecessorspij can then be ob-
tained fromT i. The tree is compared with the previous shortest path
tree and only the differences are then reported to the neighbors. If there
are no differences, no updates are reported. Eventually all tables con-
verge such thatDi

j give the shortest distances and all message activity
will cease. The proofs are given in section III.

D. ComputingSij

In this subsection, the final desired routing algorithm MPATH is de-
rived by making extensions to PATH. MPATH computes the successor
setsSij by enforcing the Loop-free Invariant conditions described be-
low and using a neighbor-to-neighbor synchronization.

ProcedureMTU
1. Clear link tableT i.
2. For each nodej 6= i occurring in at least oneT i

k,
a. FindMIN minfDi

jk + likjk 2 N
ig.

b. Letn be such thatMIN = (Di
jn + lin). Ties are

brokenconsistently. Neighborn is the preferred neighbor
for destinationj. For each link (j, v, d) in T i

n,
Add link (j; v; d) to T i.

3. UpdateT i with each linklik.
4. Run Dijkstra’s shortest path algorithm onT i to

find newDi
j , andpij .

5. For each destinationj, if Di
j or pij changed from

previous value, setchangedandreport-it flags forj.
End MTU

Fig. 5. Main Table Update Algorithm

Let FDi
j , called the feasible distance, be an ’estimate’ of the dis-

tance of nodei to nodej in the sense thatFDi
j is equal toDi

j when
the network is in stable state, but to prevent loops during periods of
network transitions, it is allowed to be temporarily differ fromDi

j .

Loop-free Invariant Conditions(LFI)[16]:

FDi
j(t) � Dk

ji(t) k 2 N i (1)

Sij(t) = f k j Di
jk(t) < FDi

j(t)g (2)

The invariant conditions (1) and (2) state that, for each destination
j, a nodei can choose a successor whose distance toj, as known toi,
is less than the distance of nodei to j that is known to its neighbors.

Theorem 1: [16] If the LFI conditions are satisfied at any timet,
theSGj(t) implied by the successor setsSij(t) is loop-free.

Proof: Let k 2 Sij(t) then from (2) we have

Di
jk(t) < FDi

j(t) (3)

At nodek, because nodei is a neighbor, from (1) we have

FDk
j (t) � Di

jk(t) (4)

Combining (3) and (4) we get

FDk
j (t) < FDi

j(t) (5)

Eq.(5) states that, ifk is a successor of nodei in a path to destina-
tion j, thenk’s feasible distance toj is strictly less than the feasible
distance of nodei to j. Now, if the successor sets define a loop at time
t with respect toj, then for some nodep on the loop, we arrive at the
absurd relationFDp

j (t) < FDp
j (t). Therefore the LFI conditions are

sufficient for loop-freedom.
The invariants used in LFI are independent of whether the algorithm

uses link states or distance vectors; in link-state algorithms, such as
MPDA, theDi

jk are computed locally from the link-states communi-
cated by the neighbors while in distance-vector algorithms, like the
MPATH presented here, theDi

jk are directly communicated.
The invariants (1) and (2) suggest a technique for computingSij(t)

such that the successor graphSGj(t) for destinationj is loop-free at
every instant. The key is determiningFDi

j(t) in Eq. (1), which requires
nodei to knowDk

ji(t), the distance fromi to nodej in the topology

4

ProcedureINIT-MPATH
fInvoked when the node comes up.g
1. Initialize tables and run MPATH.

End INIT-MPATH

Algorithm MPATH
fInvoked when a message M is received from neighbork,
or an adjacent link tok has changed.g
1. RunNTU to update neighbor tables.
2. RunMTU to obtain newDi

j andpij .
3. If node isPASSIVEor node isACTIVE^ last reply arrived,

Resetgoactiveflag.
For each destinationj marked asreport-it,

a.FDi
j minfDi

j ; RD
i
jg

b. If Di
j > RDi

j , Setgoactiveflag.
c. RDi

j Di
j

d. Add [j, RDi
j , p

i
j] to messageM 0.

e. Clearreport-it flag for j.
Otherwise, the node is ACTIVE and waiting for more replies,

For each destinationj marked aschanged,
f. FDi

j minfDi
j ; FD

i
jg

4. For each destinationj marked aschanged,
a. Clearchangedflag for j
b. Sij fkjD

i
jk < FDi

jg
5. For each neighbork,

a.M 00 M 0.
b. If event is aqueryfrom k, Setreply flag inM 00.
c. If goactiveset, Setqueryflag inM 00.
d. If M 00 non-empty, sendM 00 to k.

6. If goactiveset, becomeACTIVE, otherwise
becomePASSIV E.

End MPATH

Fig. 6. Multi-path Loop-free Routing Algorithm

tableT k
i that nodei communicated to neighbork. Because of non-zero

propagation delay,T k
i is a time-delayed version ofT i. We observe

that, if nodei delays updating ofFDi
j withDi

j until k incorporates the
distanceDi

j in its tables, thenFDi
j satisfies the LFI condition.

Pseudocode for MPATH is shown in Figure 6. MPATH enforces
the LFI conditions by synchronizing the exchange of update messages
among neighbors usingqueryandreply flags. If a node sends a mes-
sage with aquerybit set, then the node must wait until areply is re-
ceived from all its neighbors before the node is allowed to send the
next update message. The node is said to be in ACTIVE state during
this period. The inter-neighbor synchronization used in MPATH spans
only one hop, unlike algorithms that use diffusing computation that po-
tentially span the whole network(e.g., DASM [17]).

Assume that all nodes are in PASSIVE state initially with correct dis-
tances to all other nodes and that no messages are in transit or pending
to be processed. The behavior of the network where every node runs
MPATH is such that when a finite sequence of link cost changes occurs
in the network within a finite time interval, some or all nodes to go
through a series of PASSIVE-to-ACTIVE and ACTIVE-to-PASSIVE
state transitions, until eventually all nodes become PASSIVE with cor-
rect distances to all destinations.

Let a node in PASSIVE state receive an event resulting in changes
in its distances to some destinations. Before the node sends an update
message to report new distances, it checks if the distanceDi

j to any des-
tination j has increased above the previously reported distanceRDi

j .
If none of the distances increased, then the node remains in PASSIVE
state. Otherwise, the node sets thequeryflag in the update message,
sends it, and goes into ACTIVE state. When in ACTIVE state, a node

cannot send any update messages oradd neighbors to any successor
set. After receiving replies from all its neighbors the node is allowed
to modify the successor sets and report any changes that may have oc-
curred since the time it has transitioned to ACTIVE state, and if none
of the distances increased beyond the reported distance, the node tran-
sitions to PASSIVE state. Otherwise, the node sends the next update
message with thequerybit set and becomes ACTIVE again, and the
whole cycle repeats. If a node receives a message with thequerybit
set when in PASSIVE state, it modifies its tables and then sends back
an update message with thereply flag set. Otherwise, if the node hap-
pens to be in ACTIVE state, it modifies the tables but because the node
is not allowed to send updates when in ACTIVE state, the node sends
back an empty message with no updates but thereply bit set. If a re-
ply from a neighbor is pending when the link to the neighbor fails then
an implicit reply is assumed, and such a reply is assumed to report an
infinite distance to the destination. Because replies are given immedi-
ately to queries and replies are assumed to be given upon link failure,
deadlocks due to inter-neighbor synchronization cannot occur. Eventu-
ally, all nodes become PASSIVE with correct distances to destinations,
which we prove in the next section.

III. C ORRECTNESS OFMPATH

The following properties of MPATH must be proved: (1) MPATH
eventually converges withDi

j giving the shortest distances and (2) the
successor graphSGj is loop-free at every instant and eventually con-
verges to the shortest multipath. PATH works essentially like PDA[16]
except that the kind of update information exchanged is different; PDA
exchanges link-state while PATH exchanges distance-vectors with pre-
decessor information. The correctness proof of PATH is identical to
PDA and are reproduced here for correctness. The convergence of
MPATH directly follows from the convergence of PATH because ex-
tensions to MPATH are such that update messages in MPATH are only
delayed a finite amount of time.

Definitions: The n-hop minimum distance of nodei to nodej in a
network is the minimum distance possible using a path ofn hops(links)
or less. A path that offers then-hop minimum distance is calledn-hop
minimum path. If there is no path withn hops or less from nodei to j
then then-hop minimum distance fromi to j is undefined. Ann-hop
minimum tree of a nodei is a tree in which nodei is the root and all
paths ofn hops or less from the root to any other node is ann-hop
minimum path.

LetG denote the final topology of the network, as seen by an om-
niscient observer, after all link changes occurred. (We use bold font
to refer to quantities inG). Without loss of generality, assumeG is
connected; ifG is disconnected, the proof applies to each connected
component independently.

We say that a routeri knows at leastthen-hop minimum tree, if the
tree contained in its main link tableT i is at least ann-hop minimum
tree rooted ati inG and there are at leastn nodes inT i that are reach-
able from the rooti. Note thatT i is such that the links with head nodes
that are more thann hops away fromi may have costs that do not agree
with the link costs inG.

Theorem 2: If nodei has adjacent link costs that agree withG and
for each neighbork, T i

k represents at least an(n � 1)-hop minimum
tree, then after the execution of MTU, the minimum cost tree contained
in T i is at least ann-hop minimum tree.

Proof: The proof is identical to the proof of Lemma 1 in [16] and
is provided in the appendix for convenient reference.

Theorem 3: A finite time after the last link cost change in the net-
work, the main topologyT i at each nodei gives the correct shortest
paths to all known destinations.

Proof: The proof is identical to the proof of Theorem 2 in [16]

5

and is provided in the appendix for convenient reference.
A node generates update messages only to report changes in dis-

tances and predecessor, so after convergence no messages will be gen-
erated. The following theorems show that MPATH provides instanta-
neous loop-freedom and correctly computes the shortest multipath.

Theorem 4: For the algorithm MPATH executed at nodei, let tn be
the time whenRDi

j is updated and reported for then-th time. Then,
the following conditions always hold.

FDi
j(tn) � minfRDi

j(tn�1); RD
i
j(tn)g (6)

FDi
j(t) � FDi

j(tn) t 2 [tn; tn+1) (7)

Proof: From the working of MPATH in Fig. 6, we observe that
RDi

j is updated at line 3c when (a) the node goes from PASSIVE-
to-ACTIVE because of one or more distance increases (b) the node
receives the last reply and goes from ACTIVE-to-PASSIVE state (c)
the node is in PASSIVE state and remains in PASSIVE state because
the distance did not increase for any destination (d) the node receives
the last reply but immediately goes into ACTIVE state. The reported
distanceRDi

j remains unchanged during the ACTIVE phase. Because
FDi

j is updated at line 3a each timeRDi
j is updated at line 3c, Eq. (6)

follows. When the node is in ACTIVE phase,FDi
j may also be modi-

fied by the statement on line 3f, which implies Eq. (7).

Theorem 5: (Safety property) At any timet, the successor sets
Sij(t) computed by MPATH are loop-free.

Proof: The proof is based on showing that theFDi
j andSij com-

puted by MPATH satisfy the LFI conditions. Lettn be the time when
RDi

j is updated and reported for then-th time. The proof is by induc-
tion on the interval[tn; tn+1]. Let the LFI condition be true up to time
tn, we show that

FDi
j(t) � Dk

ji(t) t 2 [tn; tn+1] (8)

From Theorem 4 we have

FDi
j(tn) � minfRDi

j(tn�1); RD
i
j(tn)g (9)

FDi
j(tn+1) � minfRDi

j(tn); RD
i
j(tn+1)g (10)

FDi
j(t) � FDi

j(tn) t 2 [tn; tn+1) (11)

Combining the above equations we get

FDi
j(t) � minfRDi

j(tn�1); RD
i
j(tn)g t 2 [tn; tn+1](12)

Let t0 be the time when message sent byi at tn is received and
processed by neighbork. Because of the non-zero propagation delay
across any link,t0 is such thattn < t0 < tn+1 and becauseRDi

j is
modified attn and remains unchanged in(tn; tn+1) we get

RDi
j(tn�1) � Dk

ji(t) t 2 [tn; t
0) (13)

RDi
j(tn) � Dk

ji(t) t 2 [t0; tn+1] (14)

From Eq. (13) and (14) we get

minfRDi
j (tn�1); RD

i
j(tn)g � Dk

ji(t) t 2 [tn; tn+1] (15)

From (12) and (15) the inductive step (8) follows. BecauseFDi
j(t0) �

Dk
ji(t0) at initialization, from induction we have thatFDi

j(t) �

Dk
ji(t) for all t. Given that the successor sets are computed based on

FDi
j , it follows that the LFI conditions are always satisfied. According

to the Theorem 1 this implies that the successor graphSGj is always
loop-free.

Theorem 6: (Liveness property) A finite time after the last change
in the network, theDi

j give the correct shortest distances andSij =

fkjDk
j < Di

j ; k 2 N
ig.

Proof: The proof is similar to the proof of Theorem 4 in [16] and
is provided in the appendix for convenience.

IV. COMPLEXITY ANALYSIS

The main difference between PATH and MPATH is that the update
messages sent in MPATH are delayed a finite amount of time in order to
enforce the invariants. As a result, the complexity of PATH and MPATH
are essentially the same and are therefore collectively analyzed.

The storage complexityis the amount of table space needed at a
node. Each one of theN i neighbor tables and the main distance ta-
ble has size of the orderO(jN j) and the main link tableT i can grow,
during execution of MTU, to size at mostjN ij timesO(jN j). The
storage complexity is therefore of the orderO(jN ijjN j).

The time complexityis the time it takes for the network to converge
after the last link cost change in the network. To determine time com-
plexity we assume the computation time to be negligible as compared to
the communication times. Iftn is the time when every node has then-
hop minimum tree, because every node processes and reports changes
in finite time jtn+1 � tnj is bounded. Letjtn+1 � tnj � � for some
finite constant�. From theorem 3, the convergence time can be at most
jN j� and, hence, the time complexity isO(jN j).

The computation complexityis the time taken to build the node’s
shortest path tree inT i from the neighbor tablesT i

k. Updating ofT i

with T i
k information isO(jN ijjN j) operation and running Dijkstra on

T i takesO(jN ijjN jlog(jN j)). Therefore the computation complexity
isO(jN ijjN j + jN ijjN jlog(jN j)).

The communication complexityis the number of update messages
required for propagating a set of link-cost changes. The analysis for
multiple link-cost changes is complex because of the sensitivity to the
timing of the changes. So, we provide the analysis only for the case of
single link-cost change. A node removes a link from its shortest path
tree if only a shorter path using two or more links is discovered and
once discovered the path is remembered. Therefore, a removed link
will not be added again to the shortest path which means that a link
can be included and deleted from the shortest path by a node at most
one time. Because nodes report each change only once to each neigh-
bor, an update message can travel only once on a link and therefore the
number of messages sent by a node can be at mostO(jEj). For cer-
tain topologies and sensitively timed sequence of link cost changes the
amount of communication required by PATH can be exponential. Hum-
blet [8] provides an example that exhibits such behavior, and though
PATH is different from the shortest-path algorithm presented in that pa-
per, we note that PATH is not immune from such exponential behavior.
However, we believe such scenarios require sensitively timed link-cost
changes which are very unlikely to occur in practice. If necessary, a
small hold-down time before sending update messages may be used to
prevent such behavior.

V. CONCLUDING REMARKS

We have presented the first routing algorithm based on distance in-
formation that provides multiple paths that need not have equal costs
and that are loop-free at every instant, without requiring inter-nodal
synchronization spanning more than one hop. The loop-free invariant
conditions presented here are quite general and can be used with ex-
isting internet protocols. The multiple successors that MPATH makes
available at each node can be used for traffic load-balancing, which as
we have shown using other algorithms (MPDA [16]) is necessary for
minimizing delays in a network. MPATH can therefore be used as an
alternative to MPDA to get similar performance. In a future work we
intend to compare the performance of the three multipath routing al-
gorithms MPATH, MPDA and DASM[17] in terms of control message
overhead and convergence times and analyze their relative merits.

REFERENCES

[1] E.W.Dijkstra and C.S.Scholten. Termination Detection for Diffusing Computations.Information
Processing Letters, 11:1–4, August 1980.

[2] D. Farinachi. Introduction to enhanced IGRP(EIGRP).Cisco Systems Inc., July 1993.

6

[3] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffusing Computations.IEEE/ACM Trans.
Networking, 1:130–141, February 1993.

[4] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing based on vectors of link states.
IEEE Journal on Selected Areas in Communications, October 1995.

[5] J.J. Garcia-Luna-Aceves and S. Murthy. A path-finding algorithm for loop-free routing.IEEE/ACM
Trans. Networking, February 1997.

[6] J.J. Garica-Luna-Aceves and M. Spohn. Scalable link-state internet routing.Proc. International
Conference on Network Protocols, October 1998.

[7] C. Hendrick. Routing Information Protocol.RFC, 1058, june 1988.
[8] P. A. Humblet. Another Adaptive Distributed Shortest Path Algorithm.IEEE Trans. Commun.,

39:995–1003, June 91.
[9] J. M. Jaffe and F. H. Moss. A Responsive Distributed Routing Algorithm for Computer Networks.

IEEE Trans. Commun., 30:1758–1762, July 1982.
[10] P. M. Merlin and A. Segall. A Failsafe Distributed Routing Protocol.IEEE Trans. Commun.,

27:1280–1287, September 1979.
[11] J. Moy. OSPF Version 2.RFC, 1247, August 1991.
[12] R. Perlman. Fault-tolerant broadcast of routing information.Computer Networks and ISDN, 7, 1983.
[13] B. Rajagopalan and M. Faiman. A Responsive Distributed Shortest-Path Routing Algorithm with

Autonomous Systems.Internetworking: Research and Experience, 2:51–69, March 1991.
[14] A. Segall. Optimal distributed routing for virtual line-switched data networks.IEEE Trans. Com-

mun., 27:201–209, January 1979.
[15] J. Spinelli and R. Gallager. Event Driven Topology Broadcast without Sequence Numbers.IEEE

Trans. Commun., 37:468–474, 1989.
[16] S. Vutukury and J.J. Garcia-Luna-Aceves. A Simple Approximation to Minimum Delay Routing.

Proc. of ACM SIGCOMM, 1999.
[17] W. T. Zaumen and J.J. Garcia-Luna-Aceves. Loop-Free Multipath Routing Using Generalized Dif-

fusing Computations.Proc. IEEE INFOCOM, March 1998.

APPENDIX

Proof of Theorem 2:

LetHi
n denote ann-hop minimum tree rooted at nodei in G and

letMi
n be the set of nodes that are withinn hops fromi in Hi

n. Let
D
i;j
n denote the distance ofi to j inHi

n. Letdij be the cost of the link
i! j. Nodei is called the head of the linki! j. The notationi; j
indicates a path fromi to j of zero or more links; if the path has zero
links, theni = j. The length of pathi ; j is the sum of costs of all
links in the path.

Property 1: From the principle of optimality (the sub-path of a
shortest path between two nodes is also the shortest path between the
end nodes of the sub-path), ifH andH 0 are twon-hop minimum trees
rooted at nodei andM andM 0 are sets of nodes that are withinn hops
from i in H andH 0 respectively, thenM =M 0 =Mi

n andMi
n � n.

For eachj 2Mi
n the length of pathi ; j in bothH andH 0 is equal

toDi;j
n . Forh � n,Di;j

h � D
i;j
n .

LetAi =
S
k2Ni A

i
k, whereAi

k is the set of nodes inT i
k. Because

T i
k is at least an(n � 1)-hop minimum tree and nodei can appear at

most once in each ofAi
k, eachAi

k has at leastn � 1 unique elements.
Therefore,Ai has at leastn� 1 elements.

Let M i
n be the set ofn � 1 nearest elements to nodei in Ai. That

is,M i
n � Ai, jM i

nj = n� 1, and for eachj 2M i
n andv 2 Ai�M i

n,
minfDi

jk + likjk 2 N
ig � minfDi

vk + likjk 2 N
ig.

To prove the theorem it is sufficient to prove the following:
1. LetGi

n represent the graph constructed by MTU on lines 2 and 3.
(i.e., before applying Dijkstra in line 4). For eachj 2 M i

n there
is a pathi; j in Gi

n such that its length is at mostDi;j
n .

2. After running Dijkstra onGi
n on line 4 in MTU, the resulting tree

is at least ann-hop minimum tree.
Let us first assume part 1 is true and prove part 2 because it is simple.

From the statement in part 1 for each nodej 2 M i
n there is a path

i; j inGi
n with length at mostDi;j

n . In the resulting tree after running
Dijkstra, we can infer there is a pathi ; j with length at mostDi;j

n .
Because there aren� 1 nodes inM i

n, the tree constructed has at least
n nodes including nodei. From property 1, it follows that the tree
constructed is at least ann-hop minimum tree.

We now prove part 1. Order the nodes inM i
n in non-decreasing

order. The proof is by induction on the sequence of elements inM i
n.

The base case is true because form1, the first element ofM i, lim1
=

minflikjk 2 N
ig andlim1

= Di;m1

1 : As induction hypothesis, let the
statement hold for the firstm� 1 elements ofM i

n. Consider them-th

elementj 2 M i
n. Let K be the highest priority neighbor for which

Di
jK + liK = minfDi

jk + likjk 2 N
ig. At mostm � 1 nodes inT i

K

can have lesser or equal distance thanj which implies pathK ; j
exists with at mostm�1 hops. Letv be the neighbor ofj in T i

K . Then
the pathK ; v ! j has at mostm� 1 hops. BecauseT i

K is at least a
(n� 1)-hop minimum tree, the linkv ! j must agree withG. Since
Di
vK + liK < Di

jK + liK , from induction hypothesis there is a path
i; v in Gi

n such that the length is at mostDi;v
n .

Now we need to show that the preferred neighbor forv is alsoK,
so that the linkv ! j will be included in the construction ofGi

n, thus
ensuring the existence of the pathi ; j in Gi

n. If some neighborK0

other thanK is the preferred neighbor forv then one of the following
two conditions should hold: (a)Di

vK0 + liK0 < Di
vK + liK or (b)

Di
vK0 + liK0 = Di

vK + liK and priority ofK0 is greater than priority of
K.

Case (a): BecauseDi
jK + liK � Di

jK0 + liK0 it follows that the path
v ; j in T i

K0 is greater than cost ofv ! j in G which implies that
T i
K0 is not a(n�1) hop minimum tree – a contradiction of assumption.

ThereforeDi
vK + liK = minfDi

vk + likjk 2 N
ig.

Case (b): LetQj be the set of neighbors that give the minimum
distance forj, i.e., for eachk 2 Qj , Di

jk + lik = minfDi
jk + likjk 2

N ig. Similarly, letQv be such that for eachk 2 Qv, Di
vk + lik =

minfDi
vk + likjk 2 N ig. If k 2 Qv andk =2 Qj , then it follows

from same argument as in case (a) thatv ; j in T i
k is greater than

cost ofv ! j in G implying T i
k is not a(n � 1)-hop minimum tree

– a contradiction of assumption. BecauseK has the highest priority
among all members ofQj andQv � Qj andk 2 Qv, K also has
the highest priority among all members ofQv. ThereforeQv � Qj .
Also, from the same argument it can be inferred thatK 2 Qv. This
proves thatv ! j will be included in the construction ofGi

n. Because
D
i;v
n + dvj = Di;j

n in G, wheredvj is the final cost of linkv ! j,
and length ofi; v in Gi

n is less than or equal toDi;v
n from induction

hypothesis, we have length ofi ; j in Gi
n less than or equal toDi;j

n .
This proves part 1 of the theorem.

Proof of Theorem 3:

The proof is by induction ontn, the global time when for each node
i,T i is at leastn-hop minimum tree. Because the longest loop-free path
in the network has at mostN � 1 links whereN is number of nodes in
the network,tN�1 is the time when every node has the shortest path to
every other node. We need to show thattN�1 is finite. The base case is
t1, the time when every node has 1-hop minimum distance and because
the adjacent link changes are notified within finite time,t1 < 1. Let
tn <1 for somen < N . Given that the propagation delays are finite
each node will have each of its neighborsn-hop minimum tree in finite
time aftertn. From Theorem 2 we can see that the node will have at
least the(n + 1)-hop minimum tree in finite time aftertn. Therefore,
tn+1 <1. From induction we can see thattN�1 <1.

Proof of Theorem 6:

The convergence of MPATH follows directly from the convergence
of PATH because the update messages in MPATH are only delayed
a finite time as allowed at line 4 in algorithm PATH. Therefore, the
distancesDi

j in MPATH also converge to shortest distances. Because
changes toDi

j are always reported to the neighbors and are incorpo-
rated by the neighbors in their tables in finite timeDi

jk = Dk
j for

k 2 N i after convergence. From line 3a in MPATH, we observe that
when nodei becomes passiveFDi

j = Di
j holds true. Because all nodes

are passive at convergence it follows thatSij = fkjDi
jk < FDi

j ; k 2

N ig = fkjDk
j < Di

j ; k 2 N
ig.

